PHOL 519 CARDIAC ARRHYTHMIA

February 28th, 2017

Jared Cregg

Case Western Reserve University Department of Neurosciences jmc205@case.edu

<u>Cardiac Arrhythmia</u> – an abnormal variation in the normal heart rate/rhythm

Cardiac Arrhythmias are caused by:

- (1) abnormal impulse formation
- (2) conduction disturbances (re-entry)

- Arrhythmias are very common most people will experience an abnormal heart rhythm sometime in their lives
- During a 24-hour period about 20% of healthy adults are likely to have frequent premature ventricular heartbeats
- Most arrhythmias are not life-threatening, but many are –
- In the US, 850,000 people are hospitalized for arrhythmia every year
- Atrial fibrillation is the most common sustained heart rhythm disorder
- >100,000 Americans have an implantable defibrillator

- Slow heart rhythms (usually atrial in origin)
 - Bradycardia: <60 bpm in sedentary adults
 - Heart 'Blocks' conduction problem
 - Slow heart beat can occur due to dysfunction of either the SA node or AV node
 - Symptoms include fatigue, lightheadedness, dizziness, blackouts
 - May necessitate pacemaker to 'normalize' heart rate
- Fast heart rhythms (atrial or ventricular origin)
 - Tachycardia: >150 bpm
 - Atrial rhythms SVT, Atrial flutter, atrial fibrillation rarely life threatening
 - Ventricular rhythms VT, ventricular fibrillation life threatening!

Cardiac conduction system: His-Purkinje Network

- Electrical activity originates in the SA node, pumps blood from atrium to ventricle
- AV node delays activity, allowing the ventricles to fill with blood
- Activity propagates via the His-Purkinje Network
- Purkinje fibers cause ventricular depolarization

Propagation of the cardiac action potential

Cardiac action potential: ionic currents

Voltage mechanism of cardiac rhythm: I_f

- Inward Na⁺/Ca²⁺ and outward K⁺ currents underlie the cardiac action potential
- Recurrent action potentials are caused by I_f , and thus hyperpolarization activated cation current generates rhythm

Congenital mutations altering Voltage Automaticity

- SCN5A depolarizing current (I_{Na})
- KVLQT1 repolarizing current (I_{Ks})
- HCN4 pacemaker current (I_f)

Ca²⁺ handling as a mechanism of rhythm generation

- RYR2 ryanodine receptor
- CASQ2 Ca²⁺ buffering protein in SR

Parasystole – protected pacemaker

- SA node is dominant pacemaker because it is most excitable
- All other pacemakers 'enslaved' to SA node via reset by SA
- If a pacemaker is protected from impulse by SA due to 'block', then it can operate independently
- This is called <u>parasystole</u>

- A variety of extrinsic factors can trigger 'afterdepolarizations':
 - Injury
 - altered electrolytes K+, Ca2+, Mg2+
 - hypoxia lung disease
 - acidosis
 - catecholamines exercise, anxiety, CHF, hyperthyroidism
 - pharmacologics caffeine, stimulants, antiarrhythmic
 - stretch hypertrophy, valve disease
- Afterdepolarizations sometimes give rise to extrasystoles (ectopic action potentials) – these are arrhythmic events.

 Early After Depolarizations – lead to bradycardia during phase 2, or triggered extrasystole and tachycardia during late phase 3

- <u>D</u>elayed <u>After Depolarizations</u> lead to tachycardia,
 DADs can lead to triggered AP
- Often result from abnormal accumulation of cytosolic Ca2+

DAD
Tachycardia-dependent

Classification of Arrhythmias

Re-entry: A fundamental mechanism of cardiac arrhythmia

- Branch 2 has unidirectional block, so impulses can travel retrograde (3 to 2) but not orthograde
- AP will travel down branch 1 and then retrogradely down branch 2.
- When AP exits the block on the proximal side, if it finds the tissue excitable then it will continue by reentry down branch 1
- Timing is critical tissue can be in non-excitable state
- Re-entry can cause tachyarrhythmia

Re-entry is problem after Myocardial Infarction (MI)

- Re-entry can cause different modes of atrial tachycardia
- Vagal maneuvers may allow termination of SVTs (Ach)
- Catheter ablation can sometimes be used to remove tissue causing re-entry – but only if the cause of the unidirectional block is identified

Other modes of Reentry

