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Astrocytes react to CNS injury by building a dense wall of filamentous processes around the lesion. Stromal cells
quickly take up residence in the lesion core and synthesize connective tissue elements that contribute to fibrosis.
Oligodendrocyte precursor cells proliferate within the lesion and entrap dystrophic axon tips. Here we
review evidence that this aggregate scar acts as the major barrier to regeneration of axons after injury. We also
consider several exciting new interventions that allow axons to regenerate beyond the glial scar, and discuss
the implications of this work for the future of regeneration biology.

© 2014 Elsevier Inc. All rights reserved.
Contents
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
Glial scar formation after CNS insult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Response of axons to the glial scar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
Proteoglycan inhibitors and their cognate receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
Astrocyte heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Restoring function to denervated targets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Conclusions and perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
Introduction

Traumatic injury to the CNS elicits physical damage to vascular net-
works and neural circuit architecture. Intense local inflammation is an
immediate consequence of injury, and causes progressive cavitation
that exacerbates the extent of theprimary lesion. In time, resident astro-
cytes become hypertrophic and form a dense scar that protects intact
neural networks from further damage (Bush et al., 1999; Faulkner
et al., 2004). For years we have thought of this astrocytic scar as the
main impediment for regenerating axons attempting to reach their dis-
tal targets. However, we have recently come to recognize the lesion
as a complex system of interacting cell types (Barnabé-Heider et al.,
es, School of Medicine, Robbins
Avenue, Cleveland, OH 44106,

ghts reserved.
2010; Busch et al., 2010; Göritz et al., 2011; Horn et al., 2008; Meletis
et al., 2008; Sabelström et al., 2013; Soderblom et al., 2013). These
cells react to injury in a stereotyped fashion, forming a mature lesion
with two distinct components: The penumbra is composed of hypertro-
phic astrocytes, whereas the lesion core is composed of NG2 glia/oligo-
dendrocyte precursor cells (OPCs), meningeal and/or vascular derived
fibroblasts, pericytes, ependymal cells, and phagocytic macrophages
(Fig. 1).

Regenerating axons attempting to navigate the mature lesion ulti-
mately abort their mission and form dystrophic end bulbs that persist
indefinitely (Ramón y Cajal, 1928). These dystrophic end bulbs have
long been considered a hallmark of regeneration failure (Tom et al.,
2004), and have been identified within a human spinal cord lesion
42 years after injury (personal communicationwith Ruschel, Sliwsinski,
Blesch, Weidner, and Bradke). Here we will review the formation of the
glial scar as a framework for understanding axonal dystrophy. Addition-
ally, we will consider several active processes within the lesion that
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Fig. 1. Anatomy of a contusive spinal cord lesion. Spinal cord lesions have two distinct components—the lesion penumbra is composed of hypertrophic astrocytes, and the lesion core is
composed of NG2+ oligodendrocyte precursor cells, PDGFRβ + fibroblasts, and macrophages/microglia. Dystrophic axons become entrapped within the lesion in close association with
NG2glia. The layered architecture of the glial scar is thought to reflect both the dynamic polarization of different populations of cells at distinct times after injury and segregation of distinct
populations via chemorepulsion.
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underlie regeneration failure—including inhibitory interactions be-
tween axons and extracellular matrix, and phagocytic processes that
cause axonal dieback.

With our growing understanding of the processes that actively block
regeneration of severed axons, strategies have emerged that allow
axons to navigate through and beyond injury sites, or to circumvent
the lesion altogether. These studies have advanced the idea that long
distance regeneration of axons past sites of CNS trauma can restore sig-
nificant function to denervated targets, providing new hope for transla-
tional success.

Glial scar formation after CNS insult

Breakdown of the blood–brain barrier (BBB) and leakage of blood
and serum elements into the CNS parenchyma is considered a key
event in glial scar formation. As such, several molecules derived from
the blood or produced via inflammation have been advanced as poten-
tial triggers of scar formation, including interleukin-1 (Giulian et al.,
1988), transforming growth factor-β (TGFβ) isoforms (Asher et al.,
2000; Lagord et al., 2002; Moon and Fawcett, 2001), and fibrinogen
(Schachtrup et al., 2010). Recently, Schachtrup et al. (2010) linked the
release of a blood-derived fibrinogen-TGFβ complex directly to
astrogliosis. Genetic deletion offibrinogen reduced the amount of active
TGFβ at the lesion, with corresponding decreases in both astrocytic hy-
pertrophy and production of chondroitin sulfate proteoglycans (CSPGs).
Active TGFβ acts via a TGFβ-R/Smad2 dependent pathway in astrocytes,
presumably turning on an intrinsic transcriptional program responsible
for gliosis (Schachtrup et al., 2010). It appears that Smad2 translocation
is a critical event in the induction of gliosis—blocking kinesin-
dependent Smad2 translocation with the microtubule stabilizing agent
taxol has been associated with reduced scarring at the lesion (Hellal
et al., 2011).

Perhaps equally as important to the development of the lesion, inju-
ry causes leukocyte extravasation and accumulation of inflammatory
cells in the lesion core (Figs. 2A,B). Recent work using 3D-imaging com-
bined with genetic labeling of microglia and infiltrating monocyte-
derived macrophages (CX3CR1-GFP) has revealed that the density of
inflammatory cells increases by 40-fold in lesioned white matter and
9-fold in lesioned gray matter (Ertürk et al., 2011). This is partly due
to rapid polarization of microglia toward sites of CNS injury (Davalos
et al., 2005; Nimmerjahn et al., 2005), but probably largely reflects the
recruitment and accumulation of blood-borne cells (Ajami et al.,
2011). Indeed, activated macrophages/microglia markedly increase
expression of matrix metalloproteases (MMPs) after injury, and this
contributes to vascular permeability and accumulation of more inflam-
matory cells within the lesion. MMP inhibitors applied in the acute
phase of injury enhance functional recovery (Noble et al., 2002).
While these pools of activated macrophages/microglia are thought to
be important for lesion debridement, they also drive secondary injury
through inflammatory processes. Zymosan, a non-toxic but potent in-
flammatory agent, delivered through microneedles in a manner that
causes minimal damage to the CNS parenchyma, induces an inflamma-
tory response that is sufficient for eliciting secondary tissue damage and
causes astrocytes to rapidly migrate away from the inflammatory
epicenter (Fitch et al., 1999). More recent experiments have led to the
surprising finding that activated macrophages are responsible for
prolonged dieback of injured axons after injury (Horn et al., 2008)
(Fig. 2D). The timing of axonal dieback correlates well with the
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Fig. 2. Inflammatory processes within the lesion core. (A) After injury, macrophages andmicroglia accumulate within the lesion core. (B) Recruitment of inflammatory cells occurs by ex-
travasation of leukocytes from damaged blood vessels andmigration of resident microglia to sites of CNS injury. Tissuemacrophages and phagocytic microglia synthesize a contingent of
cytokines that promote inflammation. (C) Accumulation of inflammatory cells within the lesion core reaches peak density by 30 days after injury (data adapted from Horn et al., 2008;
Kigerl et al., 2009). (D) Dieback of injured axons occurs in two distinct phases: Acute axonal degeneration occurs via intracellular Ca2+-dependent cysteine proteases, whereas protracted
axonal dieback occurs via direct interaction with inflammatory cells. Protracted axonal dieback correlates well with the accumulation of inflammatory cells within the lesion core (C).
Data in (D) adapted from Kerschensteiner et al. (2005), Horn et al. (2008), and Evans et al. (2014). (E) Data republished from Gensel et al. (2009) with permission from the Society for
Neuroscience; permission conveyed through the Copyright Clearance Center, Inc. EGFP labeled dorsal root ganglion neuronsweremicrotransplanted at a site distant to zymosan injection.
EGFP + axons are observed growing toward the site of zymosan injection, where activated OX42+ macrophages (red) are observed engulfing DRG axon fragments.
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accumulation of pro-inflammatory CD16/32+ or ED1+ macrophages
at the lesion (Horn et al., 2008; Kigerl et al., 2009) (Figs. 2C,D), andmac-
rophages are found in close association with dystrophic axon endings.
While the nature of this association has been elusive, in vitro experi-
ments indicate that macrophages initiate dieback through matrix
metalloprotease activity and direct physical interaction with injured
axons (Horn et al., 2008). In support of this, macrophage engulfment
of axon fragments has been observed at sites of intense inflammation
(Gensel et al., 2009) (Fig. 2E) and after dorsal column injury (Evans et
al., 2014). High resolution in vivo imaging of different bonemarrow chi-
meras reveals that blood-derived macrophages, and not microglia, are
responsible for protracted axonal dieback (Evans et al., 2014).

Rapidmigration of astrocytes away from the inflammatory epicenter
initiates the formation of an astrocytic scar at the lesion penumbra
(Fig. 3A). Astrocytes however only undergo modest proliferation in
response to injury, and this proliferation is confined to a thin layer
at the lesion margin (Faulkner et al., 2004). Measurements from 3D-
imaging studies indicate that the density of astrocytes in lesioned tissue
is only 2–4 fold that of naïve tissue (Ertürk et al., 2011). Reactive glial re-
sponses are instead chiefly characterized by astrocytic hypertrophy,
where astrocytes swell in size and exhibit high expression of the inter-
mediate filament proteins GFAP, vimentin, and nestin (Barrett et al.,
1981; Bignami and Dahl, 1976; reviewed by Yang et al., 1994).
Hypertrophic astrocytes undergo restructuring as a population into a
mesh-like layer of entangled filamentous processes that acts as a
major physical barrier to regenerating axons in long descending or
ascending tracts (Wanner et al., 2013) (Figs. 3D,E). Additionally,
astrocytes begin synthesizing and depositing CSPGs into the extracellu-
lar matrix within 24 h after injury, and high concentrations of CSPGs
persist throughout the lesion for months (Jones et al., 2003; McKeon
et al., 1999; Tang et al., 2003).

The glial scar serves as a major barrier for regenerating axons, and
therefore its emergence in evolution amongst higher vertebrates appears
counterproductive (see review by Rolls et al., 2009). Converging evidence
from targeted genetic manipulations in mice indicates that the astrocytic
penumbra of the scar serves a primary role in confining inflammation to
the lesion epicenter and protecting intact neural networks from uncon-
trolled damage (Faulkner et al., 2004; Herrmann et al., 2008; Okada
et al., 2006; Wanner et al., 2013). Using mice engineered to express her-
pes simplex virus-derived thymidine kinase under the control of a GFAP
promoter element, selective ablation of dividing astrocytes can be
achieved by administration of ganciclovir (Bush et al., 1999). Faulkner
et al. (2004) used this model to selectively ablate dividing astrocytes
after spinal cord injury, and found that depletion of reactive astrocytes re-
sults in greatly expanded invasion of inflammatory cells beyond the le-
sion center resulting in a larger lesion volume and more extensive
motor deficits. In a related set of experiments, Okada et al. (2006)
showed that conditional deletion of Stat3 in nestin-positive cells
prevents organization of the astrocytic penumbra of the glial scar
after injury. This resulted in greater infiltration and spread of inflam-
matory cells, and increased motor deficits (Okada et al., 2006; see
also Herrmann et al., 2008; Wanner et al., 2013). Taken together,
these studies suggest that the glial scar prevents inflammatory pro-
cesses from propagating to healthy tissue.
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Fig. 3. Astrocyte heterogeneity. (A) Astrocytes become hypertrophic in response to CNS insult, forming a dense wall of filamentous processes at the lesion penumbra. (B–E) Data
republished fromWanner et al. (2013)with permission from the Society for Neuroscience; permission conveyed through theCopyright Clearance Center, Inc. A GFAP-Cre/MADM-reporter
genetic mosaic mouse was used to sparsely label astrocytes with RFP, enabling visualization of fine astrocytic processes, independent astrocytic domains, and astrocytes only weakly im-
munoreactive for GFAP. (B) In the uninjured cord astrocytes occupymutually exclusive domains, exhibit a bushy morphology with many fine processes, and express varying amounts of
the intermediate filament protein GFAP. (C) 14 days after injury, reactive astrocytes (RA) more distal to the lesion core exhibit increased expression of GFAP, however independent do-
mains and stellate morphology are largely maintained. (D) At the lesion penumbra (ASB), astrocytes no longer maintain a bushy appearance, but take on an elongated morphology with
extensive overlap of individual territory. (E) Two different astrocytes (1, 2) form a mesh-like layer of entangled filamentous processes at the lesion penumbra. (F–K) Generation of new
astrocytes after spinal cord injury results from at least two distinct mechanisms: 1) Generation of new astrocytes by re-entry of adult astrocytes into the cell cycle. 2) Generation of
new astrocytes by asymmetric division of neural stem cells lining the central canal. (G–K) Fluorescent images reprinted from Meletis et al. (2008). (G) Upon tamoxifen administration,
FoxJ1-CreER drivesβgal reporter expression in a population of ependymal cells lining the central canal. These cells undergo only basal levels of division in theuninjured cord (note absence
of Ki67+ cells). (H) After injury, several βgal + ependymal cells undergo division, demonstrated by co-expression with the proliferationmarker Ki67. (I) βgal + neural stem cell prog-
eny migrate away from the ependymal cell layer lining the central canal (marked by a dashed line), a majority of which become astrocytes (J). (K) Sagittal section demonstrating that
βgal + neural stem cell progeny form a major component of the glial scar one month after injury. Note the specificity of the FoxJ1-CreER line, where βgal expression is confined to
the central canal of the spinal cord in regions rostral and caudal to the lesion.
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After injury a large population of fibroblasts takes up residence in
the lesion core, forming a fibrotic scar replete with extracellular fibro-
nectin, collagen, and laminin (see review by Shearer and Fawcett,
2001) (Fig. 4A). Penetrating injuries that disrupt the meninges are
associated with meningeal fibroblast infiltration of the lesion core.
Within the lesion, meningeal fibroblasts segregate from astrocytes via
Ephrin-B2/EphB2 bidirectional signaling (Bundeson et al., 2003), and
are thought to contribute to the inhibitory properties of the scar by ex-
pression of repulsive axon guidancemolecules (Pasterkampet al., 1999)
and by promoting astrocytic reactivity (Wanner et al., 2008). Another
perhaps more significant origin of the fibrotic scar has recently been re-
vealed through careful genetic fate mapping studies (Göritz et al., 2011;
Soderblom et al., 2013). Traumatic injury disrupts perivascular niches,
causing type-A pericytes to delaminate from blood vessels (Göritz
et al., 2011) (Figs. 4C,D). Genetic fate mapping reveals that these type-
A pericytes proliferate and give rise to stromal cells, which contribute
to the fibrotic scar through their deposition of extracellular matrix
(Figs. 4E,F). Genetic abrogation of type-A pericyte progeny largely elim-
inates PDGFRβ + stromal cells within the lesion, and unexpectedly, re-
sults in failure of the lesion to close after a penetrating spinal cord injury
(Göritz et al., 2011). In another recent study, Soderblom et al. (2013)
used genetic fate mapping to show that collagen-1α1/PDGFRβ/CD13
positive perivascular fibroblasts proliferate even in response to
contusive injury where the meninges are largely intact, and form a
major cellular component of the fibrotic scar. The fibrotic core of the
glial scar appears in its mature form by 2 weeks post-injury (Göritz
et al., 2011; Soderblom et al., 2013) (Fig. 4B).

Adding to the considerable complexity of the lesion environment are
several cell types that undergo migration and proliferation when their
usual niche is disturbed due to trauma. For example, injury disrupts pro-
genitor niches. After damage, a large and heterogeneous population of
immature cells expressingmarkers associatedwith progenitors (includ-
ing nestin, vimentin, and NG2) invade the lesion core (Busch et al.,
2010; Lytle et al., 2006; Zai and Wrathall, 2005). In vivo imaging has
demonstrated that NG2 oligodendrocyte progenitors rapidly extend
processes and migrate toward CNS lesions (Hughes et al., 2013). This
migration is preceded bymicroglia temporally, and it is thought that dy-
namic polarization of different populations of cells at distinct times after
injury orchestrates the formation of a structurally layered scar (Hughes
et al., 2013). At least a subset of invading progenitors, NG2 glia, seems to
act as a highly attractive substrate for dystrophic axons, helping to sta-
bilize them within the hostile lesion environment (Busch et al., 2010;
McTigue et al., 2006). Additionally, careful genetic fate mapping of
Sox9/FoxJ1/vimentin positive ependymal cells, which normally line
the central canal and constitute a small population of neural stem cells
within the adult spinal cord, has demonstrated that these cells give
rise to new astrocytes after injury (Barnabé-Heider et al., 2010;
Meletis et al., 2008; Sabelström et al., 2013) (Figs. 3G–K). Genetic abro-
gation of this population reveals that neural stem cell progeny are re-
quired for proper organization of the glial scar, and for restricting
secondary tissue damage and neuronal loss (Sabelström et al., 2013).

Altogether we recognize the glial scar as a highly complex system
of interacting cell types (Fig. 1). Ultimately the glial scar serves as a
vital structure that preserves intact circuit elements from damage
by intense inflammation at the lesion core. However, the formation
of the glial scar creates a physical and molecular barrier that entraps
dystrophic axons and severely limits their ability to regenerate over
long distances.
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Fig. 4. Fibrosis within a contusive lesion. (A) Fibroblasts take up residencewithin the lesion core, reaching theirmaximumdensity around 10 days post injury (B, data adapted fromGöritz
et al., 2011; Soderblom et al., 2013). (C–F) Data reprinted fromGöritz et al. (2011)with permission fromAAAS. (C) Electronmicrograph of a perivascular niche 5 days post injury.Whereas
macrostructure is largely maintained, type-A pericytes (pseudocolored green) have detached from the surrounding basal lamina (bl) and deposited ECMwithin the basal lamina sheath.
(D) 14 days after injury several type-A pericytes (green) have left their perivascular niche and exhibit extensive fibrosis. (E) 18 weeks post injury the lesion core is occupied by a large
contingent of PDGFβ + fibroblasts, which are associated with deposition of fibronectin in the lesion core (F). (G) Fibrosis within a contusive lesion is caused by perivascular progenitors,
and occurs in three distinct phases: 1) Injury causes delamination of pericytes from the endothelial basement membrane. 2) Pericytes that have detached from the basement membrane
undergo transition into a mesenchymal state. 3) Progenitors give rise to fibroblasts, which synthesize extracellular matrix that contributes to fibrosis.
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Response of axons to the glial scar

The glial scar serves as the primary barrier to regenerating axons.
Compelling evidence of its pivotal role in halting advancing growth
cones comes from microtransplantation studies in which adult dorsal
root ganglion neurons were grafted into intact or degenerating white
matter tracts of the CNS (Davies et al., 1997, 1999). Dissociated adult
neurons initiated axons, and these axons grew rapidly (1 mm per
day) over long distances through intact as well as degenerating white
matter. Regenerating axons, however, entered into but then halted
abruptly within CSPG-rich territory of the lesion core, and growth
cones took on the bulbous morphology of dystrophic endings (Davies
et al., 1999) (Fig. 5A). Dystrophic growth cones were first described as
“sterile clubs” by Ramón y Cajal, who also noted their persistence in a
stable and quiescent state (Ramón y Cajal, 1928) (Figs. 5B,C). Thus,
when confronted with the inhibitory environment of the glial scar,
growth cones undergo dramatic changes that prevent their continued
growth.

Recentwork has revealed that dystrophic growth cones aremore ac-
tive than previously thought (Tom et al., 2004), and chronically injured
axons retain the potential to regenerate (Houle, 1991; Kwon et al.,
2002; Li and Raisman, 1995). Our laboratory has characterized dystro-
phic growth cones using an in vitro assay that reproduces the gradient
of proteoglycans found at the glial scar after injury (Tom et al., 2004).
Live imaging of growth cones that stall and become dystrophic in a gra-
dient of CSPGs has revealed that—despite their abnormal appearance
and lack of forward movement—dystrophic endings can be extremely
dynamic at least for a few days in vitro. These endings continually
endocytose membrane, and can sometimes send out short filopodia
that undergo repeated cycles of advancement and retraction (Tom
et al., 2004). Additional in vivo studies on dystrophic growth cones
have indicated no overt mitochondrial deficiencies or trans-Golgi net-
work abnormalities that might contribute to their stagnancy. Instead,
disorganized microtubules underlie the formation of the dystrophic
growth cone (Ertürk et al., 2007) (Figs. 5D–G). Ertürk et al. (2007)
showed that destabilization of microtubules with nocodazole was suffi-
cient for conversion of growth cones from an active to a dystrophic
state, and that stabilization of microtubules using taxol helped to pre-
vent the formation of dystrophic growth cones in vivo. Further, Hellal
et al. (2011) showed that moderate stabilization of microtubules with
taxol allows axon regeneration and functional recovery after contusive
lesion. Together, these studies have led us to believe that end bulbs
are not sterile clubs, but dynamic endings that retain the potential to
be coaxed into a state of growth.

We recently sought to better understand interactions between dys-
trophic axons and cells of the lesion environment, and found that sev-
ered sensory axons form stable contacts with NG2 glia (Busch et al.,
2010; see also McTigue et al., 2006). NG2 glia initially appear to act as
a supportive substrate that prevents axon dieback caused by inflamma-
tory cells; however, this interaction leads to long lasting entrapment of
dystrophic axons at theNG2 glial cell surface. In vitro and in vivo studies
demonstrate that these stabilizations exhibit several properties of
axodendritic synaptic specializations (unpublished data, Filous and
Silver) (Fig. 5G). Given that axons form synapses with NG2 glia in a
number of brain regions under homeostatic conditions (Bergles et al.,
2000; Chittajallu et al., 2004; Lin et al., 2005), it is possible that
synaptic-like interactions between dystrophic axons and NG2 glia
emerge in the context of injury and act to further constrain axon
growth. These observations are consistent with the hypothesis that
regenerating axons form synapse-like terminals with reactive glia,
which was originally advanced by Carlstedt (1985).

Advances in imaging have allowed live in vivo studies of acute and
chronically injured axons in the lesion environment (Di Maio et al.,
2011; Evans et al., 2014; Farrar et al., 2012; Kerschensteiner et al.,
2005; Ylera et al., 2009). Ylera et al. (2009) recently used in vivo imag-
ing to demonstrate that chronically injured axons can, indeed, be
aroused into a robust regenerative state. Using a two-photon laser to
transect individual GFP-labeled sensory axons without causing any
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Fig. 5. The glial scar acts as the primary barrier to regenerating axons. (A) Regenerating axons halt abruptly at the glial scar in close association with NG2 glia, and axon endings take on a
state of dystrophy. (B,C) Reprinted fromCajal's Degeneration and Regeneration of theNervous System (1928) by permission of OxfordUniversity Press, USA. (B)Drawing by Ramón y Cajal
of the edges of a complete transection lesion to the spinal cord. Cajal noted that adjacent to the lesion, fine axons terminate in rings or little clubs while larger axons end in voluminous
clubs. (C) Several drawings by Cajal of the various appearances of retraction clubs at the lesion. (D,E) Data republished from Ertürk et al. (2007) with permission from the Society for Neu-
roscience; permission conveyed through the Copyright Clearance Center, Inc. (D) Electronmicrograph of a growth cone in the lesioned sciatic nerve. Growth cones exhibit highly parallel
arrays of microtubules (traced with black lines). (E) Electron micrograph of a retraction bulb from a lesioned central axon of a dorsal root ganglion neuron. Retraction bulbs exhibit dis-
organized or splayed microtubules. (F) Illustration of a growth cone. Microtubules are bundled and oriented toward the direction of the growing axon. Growth cones also have a highly
organized F-actin network and several filopodia. (G) Dystrophic end bulbs have disorganized microtubules and a disrupted F-actin network. Large membrane blebs or inclusions can be
observedwithin retraction clubs. Dystrophic axons associatewith NG2 glia in the outermargin of the lesion core, forming “synaptoids” that exhibit similar properties to amature synapse,
with numerous presynaptic vesicles and omega structures, and a post-synaptic density at the NG2 glial membrane. (H) Several recently identified CSPG receptors act to signal inhibition,
and may entrap axons on the surface of NG2 glia. These receptors fall into two classes: the LAR family of transmembrane protein tyrosine phosphatases (which includes PTPσ, LAR, and
PTPδ), and the Nogo receptors NgR1 and NgR3. LAR family receptor protein tyrosine phosphatases have high sequence similarity and contain three N-terminal Ig domains, 8 fibronectin
repeats, and two intracellular tandem phosphatase domains. The first Ig domain of PTPσ, LAR, and PTPδ contains a canonical GAG bindingmotif (BB-X-BB, where B is lysine or arginine).
NgR1 and NgR3 have several leucine-rich repeats, are GPI-anchored, and contain a cluster of basic residues in the C-terminal stalk required for binding CSPGs.
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significant damage to the surrounding parenchyma, axons exhibited
modest yet continuous growth.When this minimal lesion was followed
with peripheral conditioning, a manipulation known to promote the
growth of central axons (Neumann and Woolf, 1999; Richardson and
Issa, 1984), axon growth became vigorous, allowing several axons to
grow right through the miniature CNS lesion (Ylera et al., 2009). These
results strongly support the notion that environmental factors associat-
ed with the glial scar play a critical role in regeneration failure. Further,
these results predict that manipulations promoting the intrinsic ability
of axons to growmight allow robust regeneration of injured axons—es-
pecially if mitigation of inhibitory environmental factors can be
achieved concomitantly.

Proteoglycan inhibitors and their cognate receptors

CSPGs comprise a diverse family of extracellular matrix proteins
which includes neurocan, aggrecan, brevican, phosphacan, versican,
and NG2 (Margolis and Margolis, 1993). These proteins undergo post-
translational modification with complex glycosaminoglycan chains
which vary in both length and sulfation patterns. Extensive work has
implicated proteoglycans as barriers to growing axons in the developing
nervous system (Brittis et al., 1992; Cole andMcCabe, 1991; Snow et al.,
1990b; Wu et al., 1998), and CSPGs are highly inhibitory to growing
axons in culture (Snow et al., 1990a). The first evidence that CSPGs
might have a causative role in regeneration failure emerged in the
early 1990s when it was shown that reactive astrocytes synthesize
CSPGs in response to small lesions at the dorsal root entry zone
(Pindzola et al., 1993). Indeed, astrocytes rapidly assemble and secrete
CSPGs as they migrate away from the core of central lesions (Jones
et al., 2003;McKeon et al., 1999; Tang et al., 2003). Furthermore, remov-
al of the glycosaminoglycan chains of lesion-induced proteoglycans
leads to regeneration and functional recovery after spinal cord injury
(Bradbury et al., 2002).

While the contribution of CSPGs to the inhibitory nature of the glial
scar has been known for many years (see review by Silver and Miller,
2004), mechanistic explanation as to how CSPGs inhibit advancing
growth cones was lacking—until recently. For years it was posited that
CSPGs exert inhibition through relatively nonspecific mechanisms such
as substrate occlusion (McKeon et al., 1995), or presentation of a nega-
tively charged boundary that repels growing axons (Gilbert et al., 2005).
This view has changed considerably with the discovery of several
receptors that directly bind sulfated glycosaminoglycan moieties
(Dickendesher et al., 2012; Fisher et al., 2011; Shen et al., 2009) (Fig. 5H).

Receptor protein tyrosine phosphatase sigma (PTPRS, or PTPσ) was
the first receptor identified with the ability to both bind CSPGs and
convey axonal growth inhibition (Shen et al., 2009). PTPσ is a member
of the class IIa/Leukocyte common antigen-related (LAR) family of re-
ceptor tyrosine phosphatases, along with its sister proteins PTPδ and
LAR. As all three LAR family receptors exhibit high sequence similarity
and contain a cluster of lysine residues that comprise a canonical

image of Fig.�5
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glycosaminoglycan bindingmotif (Duan andGiger, 2010;Hileman et al.,
1998), it came as no surprise when LAR was also shown to bind CSPG
(Fisher et al., 2011). PTPσ knockouts exhibit increased axonal regenera-
tion after peripheral nerve injury (McLean et al., 2002), optic nerve
crush (Sapieha et al., 2005), dorsal column lesion (Shen et al., 2009),
corticospinal tract injury (Fry et al., 2010), and cardiac ischemia reperfu-
sion injury (Gardner and Habecker, 2013). In contrast, the role of LAR in
regeneration failure remains uncertain, as several studies report either
increased or severely impaired regeneration through manipulation of
LAR signaling (Fisher et al., 2011; Van der Zee et al., 2003; Xie et al.,
2001).

In addition to LAR family phosphatases, theNOGO receptorsNgR1 and
NgR3 have also been identified as receptors for CSPGs (Dickendesher
et al., 2012). This discovery establisheda link between the twomajor fam-
ilies of inhibitory molecules associated with CNS injury—myelin derived
inhibitors and proteoglycans. Dickendesher et al. (2012) showed that
NgR1−/−; NgR2−/−; NgR3−/− mutants exhibited significant axonal re-
generation after optic nerve crush, and synergistic axonal growthwas ob-
served in animals that also lacked PTPσ. Whether signaling by NgR1/3
and PTPσ converges on a common intracellular effector (e.g. cytoskeleton,
see review by Yiu andHe, 2006) remains amajor question as intracellular
signaling pathways are worked out in greater detail.

Heparan sulfate proteoglycans (HSPGs) also act as ligands for LAR
family receptors (Aricescu et al., 2002; Coles et al., 2011; Fox and Zinn,
2005), and promote axon extension (Coles et al., 2011). Therefore, a sig-
nificant question in LAR family receptor biology is how HSPGs and
CSPGs exert opposite phenotypic changes at the growth cone through
the same receptor. A recent report has offered a mechanistic explana-
tion to this conundrum (Coles et al., 2011). Both HSPGs and CSPGs
bind to the same extracellular motif of PTPσ. This binding site exhibits
conformational flexibility at the structural level, and can accommodate
various glycosaminoglycans with similar affinities. However, HSPG and
CSPG ligands differ in their ability to cause clustering of the PTPσ
ectodomain—HSPG ligands cause ectodomain aggregation in a size
exclusion chromatography assay, and addition of CSPG diminishes this
effect. Additionally, PTPσ localization in axons grown on an HSPG sub-
strate is confined to small puncta (Coles et al., 2011). Together these re-
sults indicate that the oligomerization status of PTPσ acts to switch
axonal endings between states of growth and inactivity. Therapeutical-
ly, this characteristic of PTPσ offers a uniquepoint of intervention; drugs
that mimic HSPG binding might augment the regenerative potential of
neurons while mitigating the inhibitory environment of the glial scar.
Indeed, the complex nature of chondroitin sulfate biology—synthesis,
macromolecular organization, and signaling—suggests multiple candi-
date targets for intervention (Brown et al., 2012; Carulli et al., 2010;
Grimpe and Silver, 2004; Hur et al., 2011; Takeuchi et al., 2013; Wang
et al., 2008).
Astrocyte heterogeneity

Astrocytes are a heterogeneous population of cells that exhibit a
spectrum of phenotypic changes in response to injury (reviewed by
Sofroniew, 2009). These changes are heavily influenced by proximity
to the lesion, but may also be deterministic based on ontological identi-
ty. While reactive astrogliosis is caused largely by autogenous cell
hypertrophy and division by re-entry into the cell cycle (Fig. 3F), at
least a subset of astrocytes within the glial scar is derived from adult
neural stem cells (Barnabé-Heider et al., 2010; Meletis et al., 2008;
Sabelström et al., 2013) (Figs. 3G–K). Astrocytes derived from neural
stem cells appear to express less GFAP relative to vimentin, consistent
with a more immature state. These ependymal-derived astrocytes, al-
though present within the penumbra of the glial scar, do not synthesize
CSPGs and are permissive to axonal sprouting (Meletis et al., 2008). The
lesion penumbra is therefore composed of at least two functionally and
developmentally distinct populations of astrocytes.
Astrocytes of adult mammals react to injury by walling off lesioned
tissue, forming a so-called glial “scar” that acts as a major barrier to
regenerating axons (Silver and Miller, 2004; Wanner et al., 2013). Yet
lesions to immaturemammals or cold-blooded vertebrates are not asso-
ciated with such fate. Immature reactive astrocytes of mammalian
fetuses are capable of supporting regeneration of adult central axons
(Reier et al., 1986; Saunders et al., 1988). By implanting nitrocellulose
into the brains of immature or mature animals, it is possible to collect
scar tissue that forms on these implants for subsequent in vitro investi-
gations. When hippocampal neurons were cultured on explanted scar
tissue, axon growth was much more vigorous on scar tissue derived
from young animals than that of mature animals (Rudge and Silver,
1990). Similar results have been obtained in studies of reactive astro-
cytes from the lesioned optic nerve (Bahr et al., 1995). In vivo studies
further suggest that inherent differences between immature and ma-
ture astrocytes contribute to regeneration failure in adults (Smith and
Miller, 1991; Smith and Silver, 1988; Smith et al., 1986). Importantly,
immature astrocytes do not rapidly synthesize CSPGs in response to
injury (Dow et al., 1994). Immature, but not mature, astrocytes
transplanted near an injury site can migrate to the lesion and form a
permissive bridge for regenerating axons (Davies et al., 2006; Filous
et al., 2010). Interestingly, when rat or human fetal glial-restricted pro-
genitors were differentiated into immature astrocytes and transplanted
at sites of dorsal column lesion, sensory axons were able to regenerate
(Haas and Fischer, 2013; Haas et al., 2012). Thus, astrocytes undergo de-
velopmental changes that predispose their response to injury in adult-
hood and contribute to the inhibitory nature of the glial scar.

Glial cells of lower vertebrate species are similar tomammalian neo-
natal astrocytes in that they too are capable of supporting axon growth.
After spinal cord transection in lower vertebrates, meningeal and glial
cells migrate and interact to form a “glial bridge” which allows
regenerating axons to grow through the lesion (Butler and Ward,
1967; Goldshmit et al., 2012; Zukor et al., 2011). In Xenopus tadpoles,
severed axons can regenerate directly through astrocytic scar tissue
(Reier, 1979; Reier and de Webster, 1974). Thus, reactive glial cells in
lower vertebrates exhibit differences to their mammalian counterparts
in that they are not overtly repulsive to growing axons and are capable
of organizing growth-permissive “bridges” that allow efficient regener-
ation of axons across a lesion. It would be very provocative to know if at
least some of thewell described pro-regenerative features of mammali-
an neonatal astrocytes or ependymo-glial cells in cold blooded species
are retained within the subpopulation of astrocytes that is derived
from ependymal cells after injury (Singer et al., 1979).

While the genetic program underlying growth inhibitory reactive
gliosis of adult astrocytes is incompletely understood (Zamanian et al.,
2012), several studies have attempted to alter the course of this pro-
gram by manipulating growth factor signaling in astrocytes (Okada
et al., 2006;White et al., 2009). Recentwork has implicated acidic fibro-
blast growth factor (aFGF) signaling in promoting astrocyte migration
and morphogenesis conducive to axon regeneration after zebrafish spi-
nal cord injury (Goldshmit et al., 2012). A proteomics approach to
studying how aFGF signaling attenuates astrocytic pathology suggested
that downregulation of proteins involved in the process of secondary in-
jury and glial scar formation might play a role (Tsai et al., 2008). In a
mammalian transection model of spinal cord injury, aFGF in combina-
tion with chondroitinase can facilitate long distance regeneration
through peripheral nerve grafts, and bring about lower urinary tract re-
covery after injury (Lee et al., 2013). In aFGF treated rats, elongated as-
trocytes align and integrate along the graft/cord interface creating a
“glial bridge” into and out of the graft, in stark contrast to the dense net-
work of glial processes normally observed at the glial scar (Lee et al.,
2013). Indeed, “bridge building” by astrocytes appears to be an anatom-
ical predictor of axon regeneration (Hurtado et al., 2011; Iseda et al.,
2004; Liu et al., 2010;Ma et al., 2004; Zukor et al., 2013). Several studies
with successful axon regeneration into or through grafts also exhibitmi-
gration and integration of astrocytes at the graft/cord interface (Guest
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et al., 1997; Hurtado et al., 2011; Joosten et al., 1995; Spilker et al.,
2001), whereas lack of astrocyte integration is associated with regener-
ation failure (Hurtado et al., 2011; Xu et al., 1995). Thus, reactive astro-
cytes are a highly plastic population of cells, altering their growth
permissive or inhibitory properties in a manner that is finely tuned to
constraints of the complex lesion environment. Further studies identify-
ing factors that contribute to diverse astrocytic responses may uncover
new routes of therapeutic intervention.

Restoring function to denervated targets

While our understanding of the lesion environment continues to
mature, several strategies have emerged that allow axons to grow
through or circumvent the lesion altogether (Alilain et al., 2011; Alto
et al., 2009; De Lima et al., 2012; Lu et al., 2012; Sun et al., 2011).
While these studies have advanced hope for translational success by
demonstrating robust and lengthy regeneration of axons past sites of
CNS trauma, they also point to an entirely new set of challenges that
axonsmust overcome to successfully reinnervate their targets following
injury.

First, overcoming the physical and chemical barriers of the scar is be-
coming possible. Tello demonstrated in a classic set of experiments per-
formed over a century ago that central neurons can extend axons into
pieces of sciatic nerve grafted into the cerebral cortex (Ramón y Cajal,
1928). Since then, grafting techniques have allowed some of the most
convincing demonstrations that regeneration of adult central axons
over long distances can promote functional recovery (Alilain et al.,
2011; Houle et al., 2006; Keirstead et al., 1989; Lee et al., 2013; Lu
et al., 2012; Sauvé et al., 2001; Tom et al., 2009). Indeed, Alilain et al.
(2011) recently showed that a tibial nerve autograft can be used to
“bridge” a C2 lateral hemisection of the adult spinal cord, allowing sero-
tonergic and other bulbospinal axons to bypass the lesion and innervate
phrenic motor neurons in spinal cord levels C3-5/6. Anatomical
evidence of regeneration was accompanied by electrophysiological
studies indicating remarkable restoration of function to the paralyzed
hemidiaphragm. Furthermore, recording from the graft during respira-
tory challenge indicated that at least some of the fibers within the
graft relay respiratory drive frommedullary respiratory centers. Finally,
transection of theperipheral nerve graft eliminated patterned activity in
the ipsilateral diaphragm (Alilain et al., 2011). Tom et al. (2009) used a
similar grafting approach to demonstrate that chronically injured axons
can grow through a peripheral nerve “bridge” and restore a small
amount of function in the chronically injured spinal cord. So, although
many barriers underlie the failure of CNS axons to regenerate without
exogenous intervention, CNS axons can, nonetheless, regenerate over
great distances and make functionally meaningful connections with in-
tact neural circuitry (see review by Horner and Gage, 2000).

Second, intrinsic properties of neurons can now be manipulated in
ways that increase the growth of injured axons. Recent studies have
identified twodistinct neuronal signalingpathways that regulate axonal
growth (Park et al., 2008; Smith et al., 2009). Deletion of PTEN (a nega-
tive regulator of mTOR signaling) or SOCS3 (a negative regulator of
JAK/STAT signaling) promotes lengthy regeneration of retinal ganglion
cell axons after optic nerve crush (Park et al., 2008; Smith et al.,
2009). It has additionally been shown that knockdown or genetic dele-
tion of PTEN in adult corticospinal projection neurons allows for regen-
eration of corticospinal axons after injury (Liu et al., 2010; Zukor et al.,
2013). Interestingly, co-deletion of both PTEN and SOCS3 allows
sustained regeneration of retinal ganglion cell axons through the length
of the optic nerve, and frequently into and past the optic chiasm (Luo
et al., 2013; Sun et al., 2011). mTOR and JAK/STAT signaling pathways
appear to operate independently in the context of axon regeneration,
and stimulating both pathways allows synergetic growth of axons
(Sun et al., 2011).

Although we are able to entice axons to grow either through or
around a lesion, directing these axons to their appropriate targets
remains a topic of study. Recently, using 3D-imaging combined with a
tissue clearing technique, Luo et al. (2013) confirmed that PTEN/
SOCS3 deletion within retinal ganglion cells allows axons to regenerate
long distances; however, regenerating axons exhibit a variety of aber-
rant phenotypes. With respect to their course along the optic nerve,
40% of regenerating axons make a U-turn back toward the optic nerve
head in areas proximal to the lesion, and 10% of axons make U-turns
in themore distal nerve. The authors showed that high amounts of turn-
ing correlate with intense astroglial activation, indicating that reactive
astrocytes well away from the injury site may misguide regenerating
axons in the optic nerve. During development, axons reach a decision
point at the optic chiasm, where roughly equal numbers of axons
cross the optic chiasm and course within the contralateral optic tract
as project to the ipsilateral optic tract. Luo et al. (2013) showed that
regenerating axons are more likely to project to the ipsilateral optic
tract than cross the chiasm, and regenerating axons often (~10–20% of
cases) project to the intact contralateral optic nerve. None reached
their appropriate targets in the thalamus or tectum. Thus, the precise
molecular cues that once regulated axon pathfinding during develop-
ment of the visual system are apparently not preserved into adulthood.
Certain types of bulbospinal projections controlling more primitive
functions such as micturition, respiration, and crude locomotion do
appear to establish functional connections once beyond the glial scar.
However, to promote appropriate target reinnervation of highly
complex and topographically organized systems (such as visual and
corticospinal systems), we may need to consider methods that encour-
age proper guidance and synaptic specification of axons that regenerate
beyond the glial scar (Alto et al., 2009).
Conclusions and perspective

As a field we have made significant progress in understanding the
nature of central nervous system lesions, providing in recent years
some of the most exciting evidence of functional recovery in experi-
mental models of injury. Building on our knowledge of how lesions de-
velop over time,wemay eventually begin to expand these interventions
to states of chronic injury. Undoubtedly, combination strategies that ac-
count for multiple obstacles to axon regeneration are likely to have the
most success.
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